引用本文 ↓

王可欣,陈柔雯,田新朋.专性海洋放线菌盐孢菌的研究进展[J].生物资源, 2018, 40(5): 430-442.

Wang K X, Chen R W, Tian X P. Advances in the marine obligate actinomycete genus Salinispora [J]. Biotic Resources, 2018, 40(5): 430-442.

参考文献 1
JensenP R, DwightR, FenicalW. Distribution of actinomycetes in near-shore tropical marine sediments[J]. Appl Environ Microbiol, 1991, 57(4): 1 102-1 108.
参考文献 2
JensenP R, MooreB S, FenicalW.The marine actinomycete genus Salinispora: a model organism for secondary metabolite discovery[J]. Nat Prod Rep, 2015, 32(5): 738-751.
参考文献 3
MaldonadoL A, FenicalW, JensenP R, et al. Salinispora arenicola gen. nov., sp. nov. and Salinispora tropica sp. nov., obligate marine actinomycetes belonging to the family Micromonosporaceae[J]. Int J Syst Evol Microbiol, 2005, 55(5): 1 759-1 766.
参考文献 4
JensenP R, MafnasC. Biogeography of the marine actinomycete Salinispora[J]. Environ Microbiol, 2006, 8(11): 1 881-1 888.
参考文献 5
AhmedL, JensenP R, FreelK C, et al. Salinispora pacifica sp. nov., an actinomycete from marine sediments[J]. Antonie Van Leeuwenhoek, 2013, 103(5): 1 069-1 078.
参考文献 6
MincerT J, JensenP R, KauffmanC A, et al. Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments[J]. Appl Environ Microbiol, 2002, 68(10): 5 005-5 011.
参考文献 7
WeylandH. Actinomycetes in North Sea and Atlantic Ocean sediments[J]. Nature, 1969, 223(5 208): 858.
参考文献 8
GoodfellowM, HaynesJ A. Actinomycetes in marine sediments[M]. New York: Biol Biochem Biomed Aspects Actinomycetes, 1984: 453-472.
参考文献 9
NettM, MooreB S. Exploration and engineering of biosynthetic pathways in the marine actinomycete Salinispora tropica[J]. Pure and Applied Chemistry, 2009, 81(6): 1 075-1 084.
参考文献 10
TsuengG, LamK S. A low-sodium-salt formulation for the fermentation of salinosporamides by Salinispora tropica strain NPS21184[J]. Appl Microbiol Biotechnol, 2008, 78(5): 821-826.
参考文献 11
KimT K, GarsonM J, FuerstJ A. Marine actinomycetes related to the “Salinospora” group from the great barrier reef sponge Pseudoceratina clavata[J]. Environ Microbiol, 2010, 7(4): 509-518.
参考文献 12
HeH, DingW D, BernanV S, et al. Lomaiviticins A and B, potent antitumor antibiotics from Micromonospora lomaivitiensis[J]. J Am Chem Soc, 2001, 123: 5 362-5 363.
参考文献 13
FreelK C, EdlundA, JensenP R. Microdiversity and evidence for high dispersal rates in the marine actinomycete 'Salinispora pacifica'[J]. Environ Microbiol, 2012, 14(2): 480-493.
参考文献 14
MincerT J, FenicalW, JensenP R. Culture-dependent and culture-independent diversity within the obligate marine actinomycete genus Salinispora[J]. Appl Environ Microbiol, 2005, 71(11): 7 019-7 028.
参考文献 15
Prieto-DavoA, Villarreal-GomezL J, Forschner-DancauseS, et al. Targeted search for actinomycetes from nearshore and deep-sea marine sediments[J]. FEMS Microbiol Ecol, 2013, 84(3): 510-518.
参考文献 16
LetzelA C, LiJ, AmosG C A, et al. Genomic insights into specialized metabolism in the marine actinomycete Salinispora[J]. Environ Microbiol, 2017, 19(9): 3 660-3 673.
参考文献 17
JensenP R. Linking species concepts to natural product discovery in the post-genomic era[J]. J Ind Microbiol Biotechnol, 2010, 37(3): 219-224.
参考文献 18
JensenP R, WilliamsP G, OhD C, et al. Species-specific secondary metabolite production in marine actinomycetes of the genus Salinispora[J]. Appl Environ Microbiol, 2007, 73(4): 1 146-1 152.
参考文献 19
ZiemertN, LechnerA, WietzM, et al. Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora[J]. Proc Natl Acad Sci U S A, 2014, 111(12): E1 130-E1 139.
参考文献 20
BullA T, StachJ E M. Marine actinobacteria: new opportunities for natural product search and discovery[J]. Trends Microbiol, 2007, 15(11): 491-499.
参考文献 21
BerdyJ.Bioactive microbial metabolites: a personal view[J]. J Antibiot, 2005, 58(1): 1-26.
参考文献 22
ManivasaganP, VenkatesanJ, SivakumarK, et al. Marine actinobacterial metabolites: current status and future perspectives[J]. Microbiol Res, 2013, 168(6): 311-332.
参考文献 23
BullA T, WardA C, GoodfellowM.Search and discovery strategies for biotechnology: the paradigm shift[J]. Microbiol Mol Biol Rev, 2000, 64(3): 573-606.
参考文献 24
FenicalW, JensenP R, PalladinoM A, et al. Discovery and development of the anticancer agent salinosporamide A (NPI-0052)[J]. Bioorg Med Chem, 2009, 17(6): 2 175-2 180.
参考文献 25
GrollM, HuberR, PottsB C M. Crystal structures of salinosporamide A (NPI-0052) and B (NPI-0047) in complex with the 20s proteasome reveal important consequences of beta-lactone ring opening and a mechanism for irreversible binding[J]. J Am Chem Soc, 2006, 128(15): 5 136-5 141.
参考文献 26
ChauhanD, CatleyL, LiG, et al. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from bortezomib[J]. Cancer Cell, 2005, 8(5): 407-419.
参考文献 27
NiewerthD, JansenG, RiethoffL F, et al. Antileukemic activity and mechanism of drug resistance to the marine Salinispora tropica proteasome inhibitor salinosporamide A (marizomib)[J]. Mol Pharmacol, 2014, 86(1): 12-19.
参考文献 28
ChauhanD, HideshimaT, AndersonK C. A novel proteasome inhibitor NPI-0052 as an anticancer therapy[J]. Br J Cancer, 2006, 95(8): 961-965.
参考文献 29
FelingR H, BuchananG O, MincerT J, et al. Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinispora[J]. Angew Chem Int Ed Engl, 2003, 42(3): 355-357.
参考文献 30
GroenhagenU, DeOliveira A L, FieldingE, et al. Coupled biosynthesis of volatiles and salinosporamide A in Salinispora tropica[J]. Chembiochem, 2016, 17(20): 1 978-1 985.
参考文献 31
KimT K, HewavitharanaA K, ShawP N, et al. Discovery of a new source of rifamycin antibiotics in marine sponge actinobacteria by phylogenetic prediction[J]. Appl Environ Microbiol, 2006, 72(3): 2 118-2 125.
参考文献 32
WilliamsP G, MillerE D, AsolkarR N, et al. Arenicolides A-C, 26-membered ring macrolides from the marine actinomycete Salinispora arenicola[J]. J Organic Chem, 2007, 72(14): 5 025-5 034.
参考文献 33
WilliamsP G, AsolkarR N, KondratyukT, et al. Saliniketals A and B, bicyclic polyketides from the marine actinomycete Salinispora arenicola[J]. J Nat Prod, 2007, 70(1): 83-88.
参考文献 34
SchultzA W, OhD C, CarneyJ R, et al. Biosynthesis and structures of cyclomarins and cyclomarazines, prenylated cyclic peptides of marine actinobacterial origin[J]. J Am Chem Soc, 2008, 130(13): 4 507-4 516.
参考文献 35
MatsudaS, AdachiK, MatsuoY, et al. Salinisporamycin, a novel metabolite from Salinispora arenicora[J]. J Antibiot, 2009, 62(9): 519.
参考文献 36
AsolkarR N, FreelK C, JensenP R, et al. Arenamides A-C, cytotoxic NFκB inhibitors from the marine actinomycete Salinispora arenicola[J]. J Nat Prod, 2008, 72(3): 396-402.
参考文献 37
AsolkarR N, KirklandT N, JensenP R, et al. Arenimycin, an antibiotic effective against rifampin-and methicillin-resistant staphylococcus aureus from the marine actinomycete Salinispora arenicola[J]. J Antibiot, 2010, 63(1): 37.
参考文献 38
FreelK C, NamS J, FenicalW, et al. Evolution of secondary metabolite genes in three closely related marine actinomycete species [J]. Appl Environ Microbiol, 2011, 77(20): 7 261-7 270.
参考文献 39
MurphyB T, NarenderT, KauffmanC A, et al. Saliniquinones A–F, new members of the highly cytotoxic anthraquinone-γ-pyrones from the marine actinomycete Salinispora arenicola[J]. Aust J Chem, 2010, 63(6): 929-934.
参考文献 40
KerstenR D, ZiemertN, GonzalezD J, et al. Glycogenomics as a mass spectrometry-guided genome-mining method for microbial glycosylated molecules[J]. Proc Natl Acad Sci, 2013, 110(47): E4 407-E4 416.
参考文献 41
BoseU, HewavitharanaA K, VidgenM E, et al. Discovering the recondite secondary metabolome spectrum of Salinispora species: a study of inter-species diversity[J]. PloS one, 2014, 9(3): e91 488.
参考文献 42
BoseU, HodsonM P, ShawP N, et al. Bacterial production of the fungus-derived cholesterol-lowering agent mevinolin[J]. Biomed Chromatogr, 2014, 28(9): 1 163-1 166.
参考文献 43
OhD C, WilliamsP G, KauffmanC A, et al. Cyanosporasides A and B, chloro-and cyano-cyclopenta[a] indene glycosides from the marine actinomycete “Salinispora pacifica”[J]. Org Lett, 2006, 8(6): 1 021-1 024.
参考文献 44
OhD C, GontangE A, KauffmanC A, et al. Salinipyrones and pacificanones, mixed-precursor polyketides from the marine actinomycete Salinispora pacifica[J]. J Nat Prod, 2008, 71(4): 570-575.
参考文献 45
EustaquioA S, NamS J, PennK, et al. The discovery of salinosporamide K from the marine bacterium "Salinispora pacifica" by genome mining gives insight into pathway evolution[J]. Chembiochem, 2011, 12(1): 61-64.
参考文献 46
WooC M, BeizerN E, JansoJ E, et al. Isolation of lomaiviticins C-E, transformation of lomaiviticin C to lomaiviticin A, complete structure elucidation of lomaiviticin A, and structure–activity analyses[J]. J Am Chem Soc, 2012, 134: 15 285-15 288.
参考文献 47
LaneA L, NamS J, FukudaT, et al. Structures and comparative characterization of biosynthetic gene clusters for cyanosporasides, enediyne-derived natural products from marine actinomycetes[J]. J Am Chem Soc, 2013, 135(11): 4 171-4 174.
参考文献 48
BonetB, TeufelR, CrüsemannM, et al. Direct capture and heterologous expression of Salinispora natural product genes for the biosynthesis of enterocin[J]. J Nat Prod, 2014, 78(3): 539-542.
参考文献 49
WilliamsP G, BuchananG O, FelingR H, et al. New cytotoxic salinosporamides from the marine actinomycete Salinispora tropica[J]. J Organic Chem, 2005, 70(16): 6 196-6 203.
参考文献 50
BuchananG O, WilliamsP G, FelingR H, et al. Sporolides A and B: structurally unprecedented halogenated macrolides from the marine actinomycete Salinispora tropica[J]. Org Lett, 2005, 7(13): 2 731-2 734.
参考文献 51
ReedK A, ManamR R, MitchellS S, et al. Salinosporamides D-J from the marine actinomycete Salinispora tropica, bromosalinosporamide, and thioester derivatives are potent inhibitors of the 20S proteasome[J]. J Nat Prod, 2007, 70(2): 269-276.
参考文献 52
UdwaryD W, ZeiglerL, AsolkarR N, et al. Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica[J]. Proc Natl Acad Sci, 2007, 104(25): 10 376-10 381.
参考文献 53
ManamR R, MacherlaV R, TsuengG, et al. Antiprotealide is a natural product[J]. J Nat Prod, 2009, 72(2): 295-297.
参考文献 54
RichterT K S, HughesC C, MooreB S. Sioxanthin, a novel glycosylated carotenoid, reveals an unusual subclustered biosynthetic pathway[J]. Environ Microbiol, 2015, 17(6): 2 158-2 171.
参考文献 55
EjjeN, SoeC Z, GuJ, et al. The variable hydroxamic acid siderophore metabolome of the marine actinomycete Salinispora tropica CNB-440[J]. Metallomics, 2013, 5(11): 1 519-1 528.
参考文献 56
MiyanagaA, JansoJ E, McDonald L, et al. Discovery and assembly-line biosynthesis of the lymphostin pyrroloquinoline alkaloid family of mTOR inhibitors in Salinispora bacteria[J]. J Am Chem Soc, 2011, 133(34): 13 311-13 313.
参考文献 57
KesavanD, VasudevanA, MadhuriK.Biological activity of sporolides A and B from Salinispora tropica: in silico target prediction using ligand-based pharmacophore mapping and in vitro activity validation on HIV-1 reverse transcriptase[J]. Chem Biol Drug Des, 2014, 83(3): 350-361.
参考文献 58
PerrinC, RodgersB, O'ConnorJ. Nucleophilic addition to a p-benzyne derived from an enediyne: a new mechanism for halide incorporation into biomolecules[J]. J Am Chem Soc, 2007, 129(15): 4 795-4 799.
参考文献 59
McGlinchey R P, NettM, MooreB S. Unraveling the biosynthesis of the sporolide cyclohexenone building block[J]. J Am Chem Soc, 2008, 130(8): 2 406-2 407.
参考文献 60
YamashitaS, TerayamaK, OzekiE, et al. Synthetic studies on presporolide, a putative enediyne precursor of sporolides[J]. Org Lett, 2018, 20(1): 276-279.
参考文献 61
PennK, JenkinsC, NettM, et al. Genomic islands link secondary metabolism to functional adaptation in marine actinobacteria[J]. The ISME journal, 2009, 3(10): 1 193-1 203.
参考文献 62
KerstenR D, LaneA L, NettM, et al. Bioactivity-guided genome mining reveals the lomaiviticin biosynthetic gene cluster in Salinispora tropica[J]. Chembiochem, 2013, 14(8): 955-962.
参考文献 63
SongL J, Barona-GomezF, CorreC, et al. Type Ⅲ polyketide synthase beta-ketoacyl-ACP starter unit and ethylmalonyl-CoA extender unit selectivity discovered by Streptomyces coelicolor genome mining[J]. J Am Chem Soc, 2006, 128(46): 14 754-14 755.
参考文献 64
LautruS, DeethR J, BaileyL M, et al. Discovery of a new peptide natural product by Streptomyces coelicolor genome mining[J]. Nat Chem Biol, 2005, 1(5): 265-269.
参考文献 65
IshidaK, LinckeT, BehnkenS, et al. Induced biosynthesis of cryptic polyketide metabolites in a burkholderia thailandensis quorum sensing mutant[J]. J Am Chem Soc, 2010, 132(40): 13 966-13 968.
参考文献 66
LauretiL, SongL, HuangS, et al. Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens[J]. Proc Natl Acad Sci U S A, 2011, 108(15): 6 258-6 263.
参考文献 67
GrossH, StockwellV O, HenkelsM D, et al. The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters[J]. Chem Biol, 2007, 14(1): 53-63.
参考文献 68
BlasiakL C, ClardyJ.Discovery of 3-formyl-tyrosine metabolites from Pseudoalteromonas tunicata through heterologous expression[J]. J Am Chem Soc, 2010, 132(3): 926-927.
参考文献 69
KerstenR D, YangY L, XuY, et al. A mass spectrometry-guided genome mining approach for natural product peptidogenomics[J]. Nat Chem Biol, 2011, 7(11): 794-802.
参考文献 70
DuncanK R, CrusemannM, LechnerA, et al. Molecular networking and pattern-based genome mining improves discovery of biosynthetic gene clusters and their products from Salinispora species[J]. Chem Biol, 2015, 22(4): 460-471.
参考文献 71
RutledgeP, ChallisG.Discovery of microbial natural products by activation of silent biosynthetic gene clusters[J]. Nat Rev Microbiol, 2015, 13(8): 509-523.
参考文献 72
OkadaB, SeyedsayamdostM.Antibiotic dialogues: induction of silent biosynthetic gene clusters by exogenous small molecules[J]. FEMS Microbiol Rev, 2017, 41(1): 19-33.
参考文献 73
ChiangY, ChangS, OakleyB, et al. Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms[J]. Curr Opin Chem Biol, 2011, 15(1): 137-143.
参考文献 74
AmosG C A, AwakawaT, TuttleR N, et al. Comparative transcriptomics as a guide to natural product discovery and biosynthetic gene cluster functionality[J]. Proc Natl Acad Sci, 2017, 114(52): E11 121-E11 130.
参考文献 75
McGlinchey R P, NettM, EustaquioA S, et al. Engineered biosynthesis of antiprotealide and other unnatural salinosporamide proteasome inhibitors[J]. J Am Chem Soc, 2008, 130(25): 7 822-7 823.
参考文献 76
EustaquioA S, O'HaganD, MooreB S. Engineering fluorometabolite production: fluorinase expression in Salinispora tropica yields fluorosalinosporamide[J]. J Nat Prod, 2010, 73(3): 378-382.
参考文献 77
ManamR R, MacherlaV R, TsuengG, et al. Antiprotealide is a natural product[J]. J Nat Prod, 2009, 72(2): 295-297.
参考文献 78
NettM, GulderT A, KaleA J, et al. Function-oriented biosynthesis of beta-lactone proteasome inhibitors in Salinispora tropica[J]. J Med Chem, 2009, 52(19): 6 163-6 167.
参考文献 79
SunW, DaiS, JiangS, et al. Culture-dependent and culture-independent diversity of Actinobacteria associated with the marine sponge Hymeniacidon perleve from the South China Sea[J]. Antonie van leeuwenhoek, 2010, 98(1): 65-75.
参考文献 80
马亮, 张文军, 朱义广, 等. 永兴岛白穗软珊瑚共附生放线菌筛选及部分活性次级代谢产物的鉴定[J]. 微生物学报, 2013, 53(10): 1 063-1 071.
MaL, ZhangW J, ZhuG Y, et al. Isolation of Actinobacteria with antibiotic activity associated with soft coral Nephthea sp.[J]. Acta Microbiol Sin, 2013, 53(10): 1 063-1 071.
参考文献 81
YangN, SongF.Bioprospecting of novel and bioactive compounds from marine actinomycetes isolated from South China Sea sediments[J]. Curr Microbiol, 2018, 75(2): 142-149.
参考文献 82
罗雄明, 漆淑华, 田新朋, 等. 海洋放线菌Salinispora pacifica发酵液的化学成分研究[J]. 中草药, 2009, 40(11): 1 710-1 712.
LuoX M, QiS H, TianX P, et al. Chemical constituents of the fermentation of marine actinomycetes Salinispora pacifica[J]. Chin Tradit Herb Drugs, 2009, 40(11): 1 710-1 712.
参考文献 83
马艳玲, 邓海, 刘中来, 等. 稀有海洋放线菌Salinispora arenicola大片段DNA基因组文库的构建[J]. 生物技术, 2010, 20(3): 1-3.
MaY L, DengH, LiuZ L, et al. Construct library with large genomic DNA fragments from rare marine actinomycete Salinispora arenicola[J]. Biotechnol, 2010, 20(3): 1-3.
参考文献 84
房耀维, 刘姝, 王淑军, 等. 海洋稀有放线菌Salinispora arenicola CNP193基因组新颖PKS和NRPS基因簇的发掘[J]. 海洋科学, 2014, 38(12): 48-57.
FangY W, LiuS, WangS J, et al. Mining Salinispora arenicola CNP193 genome for novel PKS and NRPS gene clusters[J]. Mar Sci, 2014, 38(12): 48-57.

    摘要

    盐孢菌属(Salinispora)作为首个被报道的专性海洋放线菌,主要分布于热带和亚热带海洋沉积环境中,在海绵、海鞘中也有发现。与其他大多数放线菌一样,盐孢菌属的菌株可以产生大量具有抗细菌、抗病毒、抗肿瘤细胞活性、结构新颖的次级代谢产物且表现出物种特异性。全基因组序列分析显示,盐孢菌属菌株基因组中超过10%的基因序列与次级代谢产物合成相关,但绝大多数生物合成基因簇编码的产物未被发现,表明盐孢菌属还存在巨大的生物合成潜能,有待深入发掘。目前新的培养方法、测序技术及生物信息学、基因组发掘技术、合成生物学技术的发展对提升盐孢菌属菌株新型药物的生产潜力发挥重要作用。本文对盐孢菌属的物种多样性、系统分类与化合物发现等方面的研究进行了系统综述。

    Abstract

    alinispora is the first reported marine obligate actinomycete, which is widely distributed in tropical and subtropical marine sediments, and some are discovered in sponges or ascideans associated environments. Like most actinomycetes, Salinispora strains have potential to produce large number of novel secondary metabolites with excellent activities such as antibacterial, antiviral, anti-tumor cell. And these secondary metabolites show the obvious species-specific relationship among the members of this genus. Genome sequencing analysis shows that over 10% of the genome sequences are associated with the secondary metabolites synthesis, while the products of the most biosynthetic gene clusters are still to be found, indicating their great potential in biosynthesis to be further explored. New cultivation methods, genome sequencing and bioinformatics, deep genome mining, synthetic biology, all will contribute to effective drug discovery of this genus. This review covers the new achievements in the study of Salinispora, from diversity, taxonomy to new compound discovery.

  • 0 引 言

    0

    1989年,加利福尼亚大学Scripps Institution of Oceanography的William Fenical教授课题组的Paul R Jensen博士首次从拉丁美洲巴哈马群岛海洋沉积样品中获得一类依赖海水生长的特殊放线菌MAR1。但是,通过化学方法分析这些菌株的次生代谢产物,没有发现任何感兴趣的化合物,因此没有继续深入研究。直到1999年,该课题组的另一名博士生Mincer Tracy通过16S rRNA基因序列分析发现,这些微生物与以前描述的小单孢类放线菌很不一样,这些菌在系统进化树上形成单独分支,并与其他属关系较远,应为小单孢菌科的一个新类群,并于2002年首次命名为海洋放线菌新属Salinospora。2003年,更正该新属名为盐孢菌属(Salinispora)。分类地位确定后很快发现一株菌CNB440具有很好的抗癌 活性,从而拉开了对该属天然产物研究的序幕,这是系统分类学指导代谢产物发现的一个成功案例[1,2]

    本文对盐孢菌属的系统发育地位,资源分布及多样性,代谢产物化学及其生物活性,基因组信息以及基因组资源挖掘研究等方面进行综述。

  • 1 盐孢菌属系统发育地位及其生理特性

    1

    盐孢菌属隶属于细菌域(Bacteria),放线菌门(Actinobacteria),放线菌纲(Actinobacteria),小单孢菌目(Micromonosporales),小单孢菌科(Micromonosporaceae)。目前该属共包含三个物种,沙栖盐孢菌(Salinispora arenicola)和热带海洋盐孢菌(Salinispora tropica)于2005年被正式确立[3],太平洋盐孢菌(Salinispora pacifica)2006年被提出[4],于2013年被正式确立[5]

    盐孢菌属是首个被证实的专性海洋放线菌[6]。由于之前对海洋放线菌的定义不明确,虽然早些年研究人员从深海沉积物中分离出放线菌[7],但无法证明该放线菌是海洋来源的[8],而盐孢菌属菌株由于在无海水的复合培养基中不能生长,即生长属于海水依赖型,并且不像其他形成孢子的放线菌可以从临近海岸获得,所以将盐孢菌属定义为专性海洋放线菌[6,9]。2008年,Tsueng等[10]发现盐孢菌属菌株在含有低钠离子(5.0 mmol/L)的氯化钾盐培养基中可以生长,并且次生代谢产物盐孢菌素A(salinosporamide)的产量良好。因此,海水并非盐孢菌属生长的必需条件,但培养基中足够高的离子强度是维持其生长的关键因素。小单孢菌科(Micromonosporaceae)的两株菌株CNB 394和CNB 512的生长虽然不需要海水,但它们能比盐孢菌属的菌株耐受更高浓度的氯化钠,表明某些海洋来源的小单孢菌可适应渗透压变化的潮间带或潮上带环境,而盐孢菌属则更适应深海沉积环境相对恒定的盐度[6]。由于对海洋沉积环境特殊的适应性,且具有产生全新天然产物的潜能,盐孢菌属可作为海洋环境适应性、基因挖掘和特殊代谢途径探索的良好材料。

  • 2 盐孢菌属的分布及多样性

    2

    盐孢菌属主要分布于热带及亚热带海洋沉积环境,目前已从18个海域的海洋沉积环境中分离获得,包括夏威夷岛、科特斯海、哥斯大黎加、巴哈马群岛、美属维京群岛、红海、关岛、帕劳、中国南海、斐济岛、巴布亚新几内亚、帕尔米亚岛、大堡礁、多米尼加岛、墨西哥(太平洋海域)、马德里群岛、墨西哥(加勒比海域)和日本海域[2];在澳大利亚大堡礁的海绵(Pseudoceratum clavata)中[11]和斐济岛的海鞘(Polysyncraton lithostrotum)也有分离得到[12,13]。目前盐孢菌属分离的最深深度为1 100 m[14];通过非培养方法检测到该属可能存在于深达5 699 m的海底[15]。盐孢菌属三个物种中沙栖盐孢菌分布最广泛,分布范围最窄的是热带海洋盐孢菌,多次扩大取样范围后仍仅在巴哈马群岛分离出该种[4]。Letzel等[16]分离的119株盐孢菌属菌株中除了4株分离自海绵样品,其余均分离自10个海洋沉积环境,采样深度为1~700 m,其分布情况与上述结论相符,即三个物种的分布范围由大到小分别为沙栖盐孢菌>太平洋盐孢菌>热带海洋盐孢菌(表1)。沙栖盐孢菌与另外两个种热带海洋盐孢菌和太平洋盐孢菌可在同一位点存在,表明盐孢菌属物种形成的原因是生态分化,而非地理隔离[4]。同一物种(沙栖盐孢菌以及太平洋盐孢菌)在全球海洋广泛分布的原因可能是该物种具有高迁移速率,其迁移速率高于16S rRNA基因和基因间隔序列(internal transcribed space,ITS)进化的速率[13]

    表1 盐孢菌属完成全基因组测序的119株菌株的分布[16]

    Table 1 Distribution of 119 genome-sequenced Salinispora strains[16]

    地理位置经度纬度沙栖盐孢菌太平洋盐孢菌热带海洋盐孢菌
    斐济岛178° 31.425' E18° 45.342' S1722-
    加勒比海域77° 55.19' W26° 37.57' N11-12
    关岛144° 38.8' E13° 21.9' N43-
    夏威夷岛156° 29.626' W20° 38.086' N74-
    帕劳134° 22.855' E07° 14.431' N76-
    帕尔米亚岛162° 07.491' E05° 52.233' N5--
    科特斯海110° 35.32' W24° 51.37' N84-
    巴亚尔塔港105° 17.380' W20° 32.687' N11-
    红海35° 23.03' E24° 22.55' N22-
    马德里群岛16° 16.700' W33° 03.155' N-3-
    表1
                    盐孢菌属完成全基因组测序的119株菌株的分布[16]

    盐孢菌属三个物种16S rRNA基因序列具有很低的种间和种内差异。首先,种间差异小,热带海洋盐孢菌沙栖盐孢菌和太平洋盐孢菌的16S rRNA基因序列相似性高达99%,对应核苷酸差异数目最小仅为5对,最大也仅有7对[17],其中热带海洋盐孢菌与太平洋盐孢菌16S rRNA基因序列差异比两者与沙栖盐孢菌的序列差异更小,表明热带海洋盐孢菌与太平洋盐孢菌可能具有更近的亲缘关系[18]。Ziemert等[19]将10个单拷贝基因(dnaAgyrBpyrHrecApgitrpBatpDsucCrpoBtopA)连在一起构建盐孢菌属系统进化树(图1),结果显示沙栖盐孢菌,太平洋盐孢菌与热带海洋盐孢菌种内分别有6、5和1个亚型,而沙栖盐孢菌位于一个独立的分支,热带海洋盐孢菌与太平洋盐孢菌聚在一支,表明热带海洋盐孢菌与太平洋盐孢菌亲缘关系更近。其次,三个物种的16S rRNA基因序列的种内差异性极低。Jensen等[18]对该属三个种不同菌株的16S rRNA基因序列进行分析发现,在巴哈马群岛分离出6株热带海洋盐孢菌菌株的16S rRNA基因序列具有100%的相似性,34株沙栖盐孢菌菌株中26株具有100%的相似性,其余8株菌分为两类表型“A”和“B”(A、B两种表型菌株各4株),这两类表型的菌株与其余沙栖盐孢菌菌株也只有一个核苷酸位点的差异,7株太平洋盐孢菌中的5个菌株16S rRNA基因序列相似性高达100%。

    图1
                            盐孢菌属(Salinispora)系统发育树[19]

    图1 盐孢菌属(Salinispora)系统发育树[19]

    Fig. 1 Salinispora species phylogeny[19]

    ☀表示自举值为100%的分支节点;●表示自举值大于80%的分支节点;〇表示自举值大于50%的分支节点;□表示贝叶斯后验概率为1

    ☀ =100% bootstrap support; ● >80% bootstrap support; 〇 >50% bootstrap support; □=posterior probability of 1

    虽然盐孢菌属在全球分布,但通过纯培养和免培养方法研究结果显示,该属放线菌仅有三个物种被发现,表明该属物种多样性很低[14]。盐孢菌属的菌株在沉积环境中有两种存在形式:活动的菌体与休眠孢子。目前,由于孢子的DNA提取困难,分子检测存在局限性,可能会使其丰富度和多样性分析结果产生偏差,需要新技术的开发和应用。

  • 3 盐孢菌属的新颖代谢产物及其生物活性

    3

    特殊的海洋环境(如深海生态系统、热液口生态系统、冷泉生态系统等)孕育了特殊的微生物物种,这些物种携带新的基因和代谢机制,产生全新的生物活性化合物[20]。放线菌是次级代谢产物的重要来源[21],具有丰富的多样性和产生药源化合物的巨大潜能,是寻找新颖次级代谢产物的重要对象[22]。由于在陆地环境发现的新生物活性物质逐年减少,微生物学家和化学家们将目光转向海洋稀有的、独特的、新放线菌资源[22,23]。研究发现,海洋放线菌的次级代谢产物不仅抗菌、抗病毒、抗肿瘤,它们还具有重要的生态功能,如营养获得、化学通讯和免疫防御等(表2)。

    表2 盐孢菌属次级代谢产物及生物活性

    Table 2 Bioactive secondary metabolites derived from the genus Salinispora

    产生菌化合物名称生物学活性作用的分子靶标报道年份参考文献

    沙栖盐孢菌

    (Salinispora arenicola)

    利福霉素B、SV(rifamycins B、SV)抗菌RNA聚合酶2006[31]
    arenicolides A⁃C抗人结肠腺癌细胞株未知2007[32]
    saliniketals A⁃B癌症的化学预防鸟氨酸脱羧酶2007[33]
    cyclomarin D未知未知2008[34]
    cyclomarazines A⁃B抗病毒、抗炎症未知2008[34]
    盐孢霉素(salinisporamycin)细胞毒性未知2009[35]
    arenamides A⁃C抗炎症转录因子2008[36]
    arenimycin A抗菌未知2010[37]
    星型孢菌素(staurosporine)抗癌、抗肿瘤蛋白激酶2011[38]
    盐孢菌醌A⁃F(saliniquinones A⁃F)细胞毒性未知2010[39]
    arenimycin B抗耐药菌未知2013[40]
    利福霉素(rifamycins O、W)未知未知2014[41]
    洛伐他汀(mevinolin)抗癌、抗肿瘤HMG⁃COA还原酶2014[42]

    太平洋盐孢菌

    (Salinispora pacifica)

    lomaiviticins A⁃B抗菌、抗肿瘤DNA2001[12]
    cyanosporaside A⁃B未知未知2006[43]
    pacificanones A⁃B未知未知2008[44]
    salinipyrones A⁃B未知未知2008[44]
    盐孢菌素K(salinosporamide K)未知未知2011[45]
    lomaiviticins C⁃E未知未知2012[46]
    cyanosporasides C⁃F未知未知2013[47]
    肠道菌素(enterocin)抗菌未知2014[48]

    热带海洋盐孢菌

    (Salinispora tropica)

    盐孢菌素A(salinosporamide A)抗癌、抗肿瘤蛋白酶体2003[29]
    盐孢菌素B⁃C(salinosporamide B⁃C)未知未知2005[49]
    sporolides A⁃B抗癌逆转录酶2005[50]
    盐孢菌素D⁃J(salinosporamides D⁃J)未知未知2007[51]
    salinilactam A未知未知2007[52]
    antiprotealide未知未知2009[53]
    sioxanthin未知未知2015[54]
    三个种共有去铁敏B(desferrioxamine B)铁载体铁螯合2013[55]
    三个种共有淋巴斯汀(lymphostin)免疫抑制剂未知2011[56]
    表2
                    盐孢菌属次级代谢产物及生物活性

    盐孢菌属产生的新颖次级代谢产物中,有十多种具有特殊活性(表2),包括盐孢菌素(salinosporamides)、利福霉素(rifamycins)、saliniketals、sporolides、cyclomarazines、盐孢霉素(salinisporamycin)、arenimycins、盐孢菌醌(saliniquinones)、lomaiviticins、去铁敏(desferrioxamine)、洛伐他汀(mevinolin)、淋巴斯汀(lymphostin)。盐孢菌素A(NPI-0052)是该属菌株产生的抗肿瘤显著的明星化合物,它具有γ-内酰胺-β-内酯双环核心,负责与20S蛋白酶β亚基发生不可逆结合[24],对包括人肺癌细胞NCI-H226,SF-539 CNS癌细胞,黑素癌SK-MEL-28和乳腺癌MDA-MB-435等60个癌细胞模型检测结果显示,其IC50低于10 nmol/L,尤其是对体外人结肠癌HCT-116表现很强的细胞毒性(IC50=11 ng/mL)。盐孢菌素A作为蛋白酶抑制剂,蛋白酶体抑制活性的测试发现其对糜凝乳蛋白酶体的IC50达到1.3 nmol/L,抑制活性约为omuralide的35倍。硼替佐米(Bortezomib)是批准用于治疗多发性骨髓瘤的首例蛋白酶抑制剂,但是由于存在细胞毒性以及日益产生的抗药性,对于治疗癌症具有局限性。而盐孢菌素A可与20S蛋白酶发生不可逆结合[25],且对三种蛋白酶活性都有抑制作用[26],对于抗硼替佐米的白血病细胞有潜在的抑制活性[27],可以克服传统疗法和硼替佐米疗法的抗药性影响[28],是良好的候选药物。盐孢菌素A于2003年被报道[29],特异性地存在于热带海洋盐孢菌,2015年被美国FDA批准为孤儿药,名称为Marizomib。盐孢菌素A完整的生物合成路径仍在研究中,通过敲除盐孢菌素生物合成基因salXsalD,再加上喂养实验,表明3-(环己-2-烯-1-yl)-2-氧代丙酸(60)和3-(环己-2-烯-1-亚甲基)-2-氧代丙酸是盐孢菌素A生物合成的重要中间产物[30]

    Sporolides是该属产生的另外一个重要化合物系列,最初从巴哈马群岛红树林环境中发现的菌株热带海洋盐孢菌CNB-392[50]中分离获得。基于配体的药效团映射方法,利用已知的抑制剂和药物对sporolides的可能作用靶点进行预测,显示sporolide A和B与HIV-1逆转录酶表现最高的对接分数,在体外荧光测定中,sporolide B对HIV-1逆转录酶表现良好的抑制活性,进一步验证了sporolides的生物学活性[57]。Sporolides具有特殊的化学结构,包括两个部分,一氯化环戊二烯并[a]茚以及高度氧化的环氧醌,两者通过1,4-二恶烷环和大内酯相结合,其具体的生物代谢途径仍不清楚;Perrin等[58]认为这些化合物是由不稳定的九元烯二炔前体presporolide通过伯格曼环化反应而来,之后对sporolides生物合成基因簇(spo)的分析支持了这一观点[59]。由于九元烯二炔在缺乏脱辅基蛋白的条件下不稳定,目前仍难以分离出presporolide,仅完成了presporolide核心框架的合成[60]。Sporalides生物合成基因簇中一个基因spoT1可能与酪氨酸代谢有关,在验证酪氨酸在sporolides生物合成中作用的实验中发现,酪氨酸的存在使sporolides产量增加10倍[9]

  • 4 盐孢菌属代谢产物的物种特异性

    4

    截至2017年,从盐孢菌属沙栖盐孢菌、太平洋盐孢菌、热带海洋盐孢菌分别分离出13、8、7种化合物以及三个物种共有的2个化合物(表2)等共30余种新颖次级代谢产物。这些次级代谢产物具有明显的物种特异性,这与传统观念认为次级代谢产物是菌株特异的有一定的偏差。该属同一物种不同菌株会产生相同种类的、不同于其他物种的次级代谢产物,如沙栖盐孢菌菌株中分离获得的利福霉素、星型孢菌素在另外两个种中并未发现,为该物种特异的化合物,而热带海洋盐孢菌中特异性化合物为盐孢菌素[18]。通过比较基因组学分析发现,三个物种中不同基因簇的系统聚类基本可以将三个物种75个菌株分为三个分支,明显表现出基因簇在物种水平上的特异性[19]。微生物中次级代谢产物可能都具有物种特异性,至于前期实验中发现的同一物种的某些菌株产生不同的次级代谢产物,而不同物种的菌株可产生相同次级代谢产物的现象,他们认为前者可能是由于传统的分类方法将相近菌株划分到不同类群导致,而通过使用更高分类精度的序列分析分类方法可解决这一问题;而后者可能是受到水平基因迁移的影响[18]

    次级代谢产物的物种特异性对于研究盐孢菌属放线菌适应海洋环境的方式和分布情况、代谢产物多样性和次级代谢产物的进化方式等都有着重要作用[18]。某些特定次级代谢产物具有唯一物种来源,即只能从特定物种中获得,因而新物种的发现对于新型化合物的发现有一定的指示作用,新的次级代谢产物的发现可能依赖于新的盐孢菌属物种的分离和发现;反之亦然,当新颖的次级代谢产物被发现,则可能表示有新的盐孢菌属类群被培养出来。因此,次级代谢产物的物种特异性对于天然产物化学研究和微生物分类学研究等都具有重要意义[17]

  • 5 盐孢菌属的基因组研究

    5

    由于实验条件和技术的限制,我们对海洋环境及其栖息生物的认识非常有限。盐孢菌属仅是巨大海洋环境中海洋微生物的一个代表,对其的研究也才刚刚起步。2006年启动对该属菌株的基因组测序计划,2007年完成第一株的测序工作,后期的基因组研究分析发现,其超过10%基因组序列与次级代谢产物合成相关[52],表现出产生特殊活性化合物的巨大潜能,引起科学家的巨大兴趣。截至2017年,来自不同环境的129株盐孢菌属菌株的全基因组被测定,包括12株热带海洋盐孢菌、52株太平洋盐孢菌和65株沙栖盐孢菌(表3),基因组序列全部上传至Integrated Microbial Genomes (IMG)数据库(https://img.jgi.doe.gov/)。

    表3 盐孢菌属菌株基因组信息

    Table 3 Genome statistics of Salinispora species level

    类群基因组数目基因组大小/Mbp基因数目Scaffold数目GC含量/%
    盐孢菌属 (Salinispora1295.535 1968469.7
    沙栖盐孢菌 (Salinispora arenicola)655.715 2778069.8
    太平洋盐孢菌 (Salinispora pacifica)525.365 1518869.8
    热带海洋盐孢菌 (Salinispora tropica)125.314 9598969.2
    表3
                    盐孢菌属菌株基因组信息

    盐孢菌属全基因组大小平均为5.53 Mb,与其他具有环状染色体的放线菌基因组大小相近[52];基因数目为5 196个,scaffold数目平均为84个,GC含量为69.7%。沙栖盐孢菌在三个物种中基因组最大,为5.71 Mb,热带海洋盐孢菌和太平洋盐孢菌的平均基因组大小分别为5.31 Mb和5.36 Mb。

    热带海洋盐孢菌CNB-400是第一个盐孢菌属完成全基因组序列测定的菌种(图2),菌株CNB-400基因组中约9.9%的序列与天然产物合成相关,包括17个生物合成基因簇,共分为9个类型:I型聚酮合酶(PKS)基因簇、Ⅱ型聚酮合酶(PKS)基因簇、Ⅲ型聚酮合酶(PKS)基因簇、烯二炔-聚酮合酶(enediyne PKS)、聚酮合酶-非核糖体肽合成酶(PKS-NRPS)杂合基因簇、非核糖体肽合成酶(NRPS)基因簇、不依赖于非核糖体肽(NRPS-independent)的合成基因簇、氨基环醇(aminocyclitol)基因簇和萜类(terpene)基因簇,可见热带海洋盐孢菌 CNB-400具有丰富多样的聚酮生物合成途径,对应基因簇发现的化合物有盐孢菌素A、sporolides A-B、淋巴斯汀、salinilactam等[52]

    图2
                            热带海洋盐孢菌CNB-400的全基因组图谱[52]

    图2 热带海洋盐孢菌CNB-400的全基因组图谱[52]

    Fig. 2 Circular chromosome of S. tropica CNB-400[52]

    2009年,对热带海洋盐孢菌CNB-400和沙栖盐孢菌CNS-205两株菌进行比较基因组学分析,后者基因组大小和基因数目都高于前者,基因数目分别为4 536和4 919个,其中直系同源基因数目为3 606个,分别占基因组79.4%和73.2%[61]。在热带海洋盐孢菌CNB-400、沙栖盐孢菌CNS-205基因组中分别发现19个、30个生物合成基因簇,其中8个基因簇对应的次级代谢产物已被分离,分别为盐孢菌素、去铁敏、sporolide、salinilactam、淋巴斯汀、利福霉素、星型孢菌素和cyclomarin[61]

    分别对75株、119株盐孢菌属菌株的基因组序列进行比较基因组学分析[16,19],发现随着菌株数目的增加,生物合成基因簇数目也在不断增加。2007年发现了49个,到2014年时增加到124个,2017年增加到176个,表现出巨大的代谢产物合成能力。目前共有24个基因簇对应的次级代谢产物被发现(表4),其中部分化合物表现出抗菌、抗癌、抗肿瘤等活性,如盐孢菌素A、sporolides、利福霉素等。比较基因组分析发现,盐孢菌属基因组中生物合成基因簇大多可以通过水平基因迁移获得,水平基因迁移被认为是细菌进化的主要驱动力,在微生物进化过程中起重要作用。随着已发现的生物合成基因簇数目的增加,所有菌株共有的基因簇数目减少(仅为4个),大部分基因簇(54%)仅存在于1~2株菌中,其生物合成基因簇同样表现出物种特异性[16]

    表4 盐孢菌属次级代谢产物与对应的生物合成基因簇[16]

    Table 4 Compounds and their associated BGCs (biosynthetic gene clusters) detected in Salinispora strains[16]

    数目化合物基因簇关联方法
    16arenicolidePKS28生物信息(B)
    20arenimycinarn生物信息(B)
    24BE⁃43547 (APD⁃CLD)PKS58生物信息(B)
    8cyanosporasidecya基因失活(G)
    19cyclomarin/cyclomarazinecym基因失活(G)
    3去铁敏(desferrioxamine)des基因失活(G)
    17肠道菌素(enterocin)ent异源表达(H)
    12斑鸠霉素(ikarugamycin)ika生物信息(B)
    8lomaiviticinlom基因失活(G)
    2淋巴斯汀(lymphostin)lym基因失活(G)
    14pacificanone/salinipyronespr基因失活(G)
    23retimycinrtm生物信息(B)
    5利福霉素(rifamycin)/saliniketalrif基因失活(G)
    11salinichelinslc生物信息(B)
    9salinilactamslm生物信息(B)
    22盐孢菌醌(saliniquinone)PKS65生物信息(B)
    10盐孢菌素(salinosporamide)sal基因失活(G)
    1sioxanthinsio基因失活(G)
    13sporolidespo异源表达(H)
    4星型孢菌素(staurosporine)sta生物信息(B)
    21tambromycintbr生物信息(B)
    6isopimara⁃8,15⁃dien⁃19⁃olterp1异源表达(H)
    15硫乳霉素(thiolactomycin)tlm异源表达(H)
    18tirandalydigintdy生物信息(B)
    表4
                    盐孢菌属次级代谢产物与对应的生物合成基因簇[16]
  • 6 盐孢菌属的基因组资源挖掘

    6

    当前,基因组指导下的微生物天然产物发现和生物合成途径研究已经常态化,基因组强大的信息量和可操控性为深入探索微生物生理代谢提供强有力的支撑。前期基因组研究显示,在盐孢菌属中,86.4%的生物合成基因簇未发现对应的次级代谢产物,这些基因簇被称为“孤儿基因簇”,基因组挖掘(genome mining)技术对于发掘细菌生物合成潜能,以及进一步服务于药物开发具有重要作用。Kersten等[62]总结了基因组挖掘的几种策略,包括目标基因簇的失活,突变型和野生型的代谢比较分析[63],生物合成基因序列的物理化学特性的预测[45],操纵生物合成途径的调控基因[64,65,66],对预测的生物合成前体的同位素标记与同位素引导的分馏结合[67],生物合成基因的异源表达[68],质谱指导的基因组发掘[69]等。

    通过基因组发掘技术研究太平洋盐孢菌CNT-133的基因组草图时发现,截断的生物合成基因簇与负责盐孢菌素A合成的热带海洋盐孢菌菌株CNB-440 sal (St_sal)位点相近,进而指导盐孢菌素家族另一个重要化合物盐孢菌素K的发现[45]。2013年,通过DNA干扰检测(DNA interference bioassasy)指导的基因组研究发现了lomaiviticin生物合成基因簇的存在[62],并成功分离获得了lomaiviticin目标化合物。Duncan等[70]通过基于串联质谱的计算方法建立分子网络(molecular networking),结合基因组序列数据,可同时分析大批菌株的次级代谢产物,并通过pattern-based的基因发掘,对次级代谢产物和生物合成基因簇进行对比,成功在30多个盐孢菌属菌株基因组和发酵产物信息中发现了新的化合物retimycin A,建立了生物合成基因簇的检测和次级代谢产物的发现之间的桥梁。

    利用基因组挖掘中的沉默基因激活方法,在实验中发现4个盐孢菌属菌株42%~72%的生物合成基因簇的表达量可达到实验室检测的标准,而已发现的化合物仅占26.5%。因此,生物合成的巨大潜能未被发掘,其原因并不是这些基因簇的表达量不够,可能是由于分离方法和分析技术的问题,以及对于值得分离和阐明结构的天然产物的主观判断等[71,72,73,74]。Amos等[74]在实验中采用的比较转录组学可以拓展基因组挖掘的方法,如通过表达和沉默的生物合成基因簇(BGCs,biosynthetic gene clusters)之间的序列差异比较,可用于指导化合物筛选和异源表达菌株的分析。

    另外,组合生物合成技术可用于有目的地合成新型化合物、发现新化合物、目标化合物结构优化和理化性质改造,该技术也是盐孢菌属代谢产物的研究方法之一。近几年在基因组序列分析的基础上,通过合成生物学得到大量新颖的次级代谢产物,如2008年,Mc Glinchey等[75]将热带海洋盐孢菌中的SalL氯化酶失活,同时加入合成的5’-氟脱氧腺苷(5’-FDA),从突变的菌株发酵液中分离出fluorosalinosporamide。2010年,Eustaquio等[76]发现通过将热带海洋盐孢菌合成盐孢菌素A的基因中的salL基因替换为牲畜链霉菌(Streptomyces cattleya)中的flA基因,也能合成fluorosalinosporamide;2008年antiprotealide最初作为盐孢菌素A和omuralide的杂合物人工合成[75],而后在2009年作为热带海洋盐孢菌的天然产物被分离发现[77](图3)。2009年通过删除salX预苯酸脱羧酶基因,一系列盐孢菌素衍生物包括antiprotealide和盐孢菌素X7被合成和发现[78]

    图3
                            antiprotealide的结构式

    图3 antiprotealide的结构式

    Fig. 3 Structure of antiprotealide

    最初由盐孢菌素A和omuralide杂合而成

    originally produced as a synthetic hybrid between salinosporamide A and omuralide

  • 7 小结与展望

    7

    盐孢菌属因其对海洋环境的特殊适应性,具有产生丰富次级代谢产物的潜能,比较基因组学分析已发现,176个生物合成基因簇,共分离获得新型次级代谢产物30余种,特别是高效抗肿瘤化合物盐孢菌素A,已经批准为孤儿药物,可能为治愈部分恶性肿瘤疾病提供可能。此外,通过发酵方法、基因组发掘以及根据已知化合物的代谢途径进行的生物学合成等获得大量具有抗菌、抗癌、抗肿瘤活性的化合物,显示出盐孢菌属这一专性海洋放线菌特殊的研究价值。我国目前对于盐孢菌属也开展了一系列的研究。首先对于菌种分离,从中国南海海绵体内分离获得13株盐孢菌属菌株[79];从珊瑚共附生环境中分离得到沙栖盐孢菌[80];本实验室在海洋放线菌研究中获得盐孢菌属菌株34株,其中包括在印度洋3 500 m深的沉积物环境中发现3株,突破文献报道的最大水深1 100 m水深的栖息范围。目前,中国海洋微生物菌种保藏管理中心(Marine Culture Collection of China,MCCC)仅记录了一株沙栖盐孢菌,与模式菌株沙栖盐孢菌CNH-643(T)相似性为99%。其次对于活性化合物的分离,Yang等[81]从盐孢菌属菌株NHF45中分离获得利福霉素B;本实验室从太平洋盐孢菌SCSIO 00013发酵液中共发现了12个化合物,包括8个生物碱和4个苯环族类化合物[82],从沙栖盐孢菌SH04中分离到化合物利福霉素S和利福霉素W[80]。此外,构建了沙栖盐孢菌的大片段DNA基因组文库[83]。房耀维等[84]通过基因组挖掘手段成功从沙栖盐孢菌 CNP193中获得3个新型基因簇。以上成果表明,我国对盐孢菌属的研究也正在逐步展开。

    为了更好地发掘盐孢菌属类群的生物合成潜能,后续的研究可以从以下几个方面进行探索。①稀有或新菌种资源的分离。首先,对于海洋沉积物环境微生物的分离,采用有效的选择性分离方法和选择性分离培养基是新资源或目的类群微生物获得纯培养的基础。其次,采集丰富多样的环境样品。每种环境均栖居有与之相适应的微生物类群,取样范围的扩大可以获得多样性更丰富的菌株资源。②微生物分类指导下的化合物发现。微生物的代谢产物具有一定的物种或菌株水平的差异。因此,在微生物分类学的基础上,有针对性地筛选部分微生物进行研究,对寻找目的性的天然产物将会有很好的指导作用。③超微量化合物的获取与鉴定。含量少的化合物获取难度较大,其出新率极高。因此,在扩大发酵的基础上,高效的萃取方法和分离纯化方法以及高精尖的结构鉴定技术等将提高海洋微生物新颖次级代谢产物的发现。④化合物生物学活性的挖掘。从盐孢菌属获得的盐孢菌素A具有高效的肿瘤细胞杀灭作用,同时该化合物还具有抗疟疾的作用,是一种蛋白酶抑制剂,因此,新化合物或已知化合物的活性功能的筛选可能发现其不同的用途,对新药源的发现也是非常有效方法。⑤独特活性化合物结构类似物的挖掘和结构优化。深入研究具有特殊活性的代谢产物合成前体或代谢的下游产物,寻找其高活性的结构类似物,或通过组合生物合成方法对目标化合物进行有效的结构修饰提高其成药潜能等。生物合成学研究指导下的新型代谢产物的合成在盐孢菌属已经有很好的应用,如fluorosalinosporamide,antiprotealide,盐孢菌素X7的合成。⑥新型基因簇的发掘与沉默基因的激活。随着信息时代的发展,基因组测序和生物信息学对于次级代谢产物的发现具有指导作用。目前通过比较基因组学的分析从盐孢菌属获得176个生物合成基因簇,其中86.4%未找到对应的次级代谢产物,表明该属仍存在大量产新型化合物的潜能,激活沉默基因进行次级代谢产物的分离也是未来功能化合物发现的一大方向。

  • 参考文献

    • 1

      Jensen P R, Dwight R, Fenical W. Distribution of actinomycetes in near-shore tropical marine sediments[J]. Appl Environ Microbiol, 1991, 57(4): 1 102-1 108.

    • 2

      Jensen P R, Moore B S, Fenical W.The marine actinomycete genus Salinispora: a model organism for secondary metabolite discovery[J]. Nat Prod Rep, 2015, 32(5): 738-751.

    • 3

      Maldonado L A, Fenical W, Jensen P R, et al. Salinispora arenicola gen. nov., sp. nov. and Salinispora tropica sp. nov., obligate marine actinomycetes belonging to the family Micromonosporaceae[J]. Int J Syst Evol Microbiol, 2005, 55(5): 1 759-1 766.

    • 4

      Jensen P R, Mafnas C. Biogeography of the marine actinomycete Salinispora[J]. Environ Microbiol, 2006, 8(11): 1 881-1 888.

    • 5

      Ahmed L, Jensen P R, Freel K C, et al. Salinispora pacifica sp. nov., an actinomycete from marine sediments[J]. Antonie Van Leeuwenhoek, 2013, 103(5): 1 069-1 078.

    • 6

      Mincer T J, Jensen P R, Kauffman C A, et al. Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments[J]. Appl Environ Microbiol, 2002, 68(10): 5 005-5 011.

    • 7

      Weyland H. Actinomycetes in North Sea and Atlantic Ocean sediments[J]. Nature, 1969, 223(5 208): 858.

    • 8

      Goodfellow M, Haynes J A. Actinomycetes in marine sediments[M]. New York: Biol Biochem Biomed Aspects Actinomycetes, 1984: 453-472.

    • 9

      Nett M, Moore B S. Exploration and engineering of biosynthetic pathways in the marine actinomycete Salinispora tropica[J]. Pure and Applied Chemistry, 2009, 81(6): 1 075-1 084.

    • 10

      Tsueng G, Lam K S. A low-sodium-salt formulation for the fermentation of salinosporamides by Salinispora tropica strain NPS21184[J]. Appl Microbiol Biotechnol, 2008, 78(5): 821-826.

    • 11

      Kim T K, Garson M J, Fuerst J A. Marine actinomycetes related to the “Salinospora” group from the great barrier reef sponge Pseudoceratina clavata[J]. Environ Microbiol, 2010, 7(4): 509-518.

    • 12

      He H, Ding W D, Bernan V S, et al. Lomaiviticins A and B, potent antitumor antibiotics from Micromonospora lomaivitiensis[J]. J Am Chem Soc, 2001, 123: 5 362-5 363.

    • 13

      Freel K C, Edlund A, Jensen P R. Microdiversity and evidence for high dispersal rates in the marine actinomycete 'Salinispora pacifica'[J]. Environ Microbiol, 2012, 14(2): 480-493.

    • 14

      Mincer T J, Fenical W, Jensen P R. Culture-dependent and culture-independent diversity within the obligate marine actinomycete genus Salinispora[J]. Appl Environ Microbiol, 2005, 71(11): 7 019-7 028.

    • 15

      Prieto-Davo A, Villarreal-Gomez L J, Forschner-Dancause S, et al. Targeted search for actinomycetes from nearshore and deep-sea marine sediments[J]. FEMS Microbiol Ecol, 2013, 84(3): 510-518.

    • 16

      Letzel A C, Li J, Amos G C A, et al. Genomic insights into specialized metabolism in the marine actinomycete Salinispora[J]. Environ Microbiol, 2017, 19(9): 3 660-3 673.

    • 17

      Jensen P R. Linking species concepts to natural product discovery in the post-genomic era[J]. J Ind Microbiol Biotechnol, 2010, 37(3): 219-224.

    • 18

      Jensen P R, Williams P G, Oh D C, et al. Species-specific secondary metabolite production in marine actinomycetes of the genus Salinispora[J]. Appl Environ Microbiol, 2007, 73(4): 1 146-1 152.

    • 19

      Ziemert N, Lechner A, Wietz M, et al. Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora[J]. Proc Natl Acad Sci U S A, 2014, 111(12): E1 130-E1 139.

    • 20

      Bull A T, Stach J E M. Marine actinobacteria: new opportunities for natural product search and discovery[J]. Trends Microbiol, 2007, 15(11): 491-499.

    • 21

      Berdy J.Bioactive microbial metabolites: a personal view[J]. J Antibiot, 2005, 58(1): 1-26.

    • 22

      Manivasagan P, Venkatesan J, Sivakumar K, et al. Marine actinobacterial metabolites: current status and future perspectives[J]. Microbiol Res, 2013, 168(6): 311-332.

    • 23

      Bull A T, Ward A C, Goodfellow M.Search and discovery strategies for biotechnology: the paradigm shift[J]. Microbiol Mol Biol Rev, 2000, 64(3): 573-606.

    • 24

      Fenical W, Jensen P R, Palladino M A, et al. Discovery and development of the anticancer agent salinosporamide A (NPI-0052)[J]. Bioorg Med Chem, 2009, 17(6): 2 175-2 180.

    • 25

      Groll M, Huber R, Potts B C M. Crystal structures of salinosporamide A (NPI-0052) and B (NPI-0047) in complex with the 20s proteasome reveal important consequences of beta-lactone ring opening and a mechanism for irreversible binding[J]. J Am Chem Soc, 2006, 128(15): 5 136-5 141.

    • 26

      Chauhan D, Catley L, Li G, et al. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from bortezomib[J]. Cancer Cell, 2005, 8(5): 407-419.

    • 27

      Niewerth D, Jansen G, Riethoff L F, et al. Antileukemic activity and mechanism of drug resistance to the marine Salinispora tropica proteasome inhibitor salinosporamide A (marizomib)[J]. Mol Pharmacol, 2014, 86(1): 12-19.

    • 28

      Chauhan D, Hideshima T, Anderson K C. A novel proteasome inhibitor NPI-0052 as an anticancer therapy[J]. Br J Cancer, 2006, 95(8): 961-965.

    • 29

      Feling R H, Buchanan G O, Mincer T J, et al. Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinispora[J]. Angew Chem Int Ed Engl, 2003, 42(3): 355-357.

    • 30

      Groenhagen U, De Oliveira A L, Fielding E, et al. Coupled biosynthesis of volatiles and salinosporamide A in Salinispora tropica[J]. Chembiochem, 2016, 17(20): 1 978-1 985.

    • 31

      Kim T K, Hewavitharana A K, Shaw P N, et al. Discovery of a new source of rifamycin antibiotics in marine sponge actinobacteria by phylogenetic prediction[J]. Appl Environ Microbiol, 2006, 72(3): 2 118-2 125.

    • 32

      Williams P G, Miller E D, Asolkar R N, et al. Arenicolides A-C, 26-membered ring macrolides from the marine actinomycete Salinispora arenicola[J]. J Organic Chem, 2007, 72(14): 5 025-5 034.

    • 33

      Williams P G, Asolkar R N, Kondratyuk T, et al. Saliniketals A and B, bicyclic polyketides from the marine actinomycete Salinispora arenicola[J]. J Nat Prod, 2007, 70(1): 83-88.

    • 34

      Schultz A W, Oh D C, Carney J R, et al. Biosynthesis and structures of cyclomarins and cyclomarazines, prenylated cyclic peptides of marine actinobacterial origin[J]. J Am Chem Soc, 2008, 130(13): 4 507-4 516.

    • 35

      Matsuda S, Adachi K, Matsuo Y, et al. Salinisporamycin, a novel metabolite from Salinispora arenicora[J]. J Antibiot, 2009, 62(9): 519.

    • 36

      Asolkar R N, Freel K C, Jensen P R, et al. Arenamides A-C, cytotoxic NFκB inhibitors from the marine actinomycete Salinispora arenicola[J]. J Nat Prod, 2008, 72(3): 396-402.

    • 37

      Asolkar R N, Kirkland T N, Jensen P R, et al. Arenimycin, an antibiotic effective against rifampin-and methicillin-resistant staphylococcus aureus from the marine actinomycete Salinispora arenicola[J]. J Antibiot, 2010, 63(1): 37.

    • 38

      Freel K C, Nam S J, Fenical W, et al. Evolution of secondary metabolite genes in three closely related marine actinomycete species [J]. Appl Environ Microbiol, 2011, 77(20): 7 261-7 270.

    • 39

      Murphy B T, Narender T, Kauffman C A, et al. Saliniquinones A–F, new members of the highly cytotoxic anthraquinone-γ-pyrones from the marine actinomycete Salinispora arenicola[J]. Aust J Chem, 2010, 63(6): 929-934.

    • 40

      Kersten R D, Ziemert N, Gonzalez D J, et al. Glycogenomics as a mass spectrometry-guided genome-mining method for microbial glycosylated molecules[J]. Proc Natl Acad Sci, 2013, 110(47): E4 407-E4 416.

    • 41

      Bose U, Hewavitharana A K, Vidgen M E, et al. Discovering the recondite secondary metabolome spectrum of Salinispora species: a study of inter-species diversity[J]. PloS one, 2014, 9(3): e91 488.

    • 42

      Bose U, Hodson M P, Shaw P N, et al. Bacterial production of the fungus-derived cholesterol-lowering agent mevinolin[J]. Biomed Chromatogr, 2014, 28(9): 1 163-1 166.

    • 43

      Oh D C, Williams P G, Kauffman C A, et al. Cyanosporasides A and B, chloro-and cyano-cyclopenta[a] indene glycosides from the marine actinomycete “Salinispora pacifica”[J]. Org Lett, 2006, 8(6): 1 021-1 024.

    • 44

      Oh D C, Gontang E A, Kauffman C A, et al. Salinipyrones and pacificanones, mixed-precursor polyketides from the marine actinomycete Salinispora pacifica[J]. J Nat Prod, 2008, 71(4): 570-575.

    • 45

      Eustaquio A S, Nam S J, Penn K, et al. The discovery of salinosporamide K from the marine bacterium "Salinispora pacifica" by genome mining gives insight into pathway evolution[J]. Chembiochem, 2011, 12(1): 61-64.

    • 46

      Woo C M, Beizer N E, Janso J E, et al. Isolation of lomaiviticins C-E, transformation of lomaiviticin C to lomaiviticin A, complete structure elucidation of lomaiviticin A, and structure–activity analyses[J]. J Am Chem Soc, 2012, 134: 15 285-15 288.

    • 47

      Lane A L, Nam S J, Fukuda T, et al. Structures and comparative characterization of biosynthetic gene clusters for cyanosporasides, enediyne-derived natural products from marine actinomycetes[J]. J Am Chem Soc, 2013, 135(11): 4 171-4 174.

    • 48

      Bonet B, Teufel R, Crüsemann M, et al. Direct capture and heterologous expression of Salinispora natural product genes for the biosynthesis of enterocin[J]. J Nat Prod, 2014, 78(3): 539-542.

    • 49

      Williams P G, Buchanan G O, Feling R H, et al. New cytotoxic salinosporamides from the marine actinomycete Salinispora tropica[J]. J Organic Chem, 2005, 70(16): 6 196-6 203.

    • 50

      Buchanan G O, Williams P G, Feling R H, et al. Sporolides A and B: structurally unprecedented halogenated macrolides from the marine actinomycete Salinispora tropica[J]. Org Lett, 2005, 7(13): 2 731-2 734.

    • 51

      Reed K A, Manam R R, Mitchell S S, et al. Salinosporamides D-J from the marine actinomycete Salinispora tropica, bromosalinosporamide, and thioester derivatives are potent inhibitors of the 20S proteasome[J]. J Nat Prod, 2007, 70(2): 269-276.

    • 52

      Udwary D W, Zeigler L, Asolkar R N, et al. Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica[J]. Proc Natl Acad Sci, 2007, 104(25): 10 376-10 381.

    • 53

      Manam R R, Macherla V R, Tsueng G, et al. Antiprotealide is a natural product[J]. J Nat Prod, 2009, 72(2): 295-297.

    • 54

      Richter T K S, Hughes C C, Moore B S. Sioxanthin, a novel glycosylated carotenoid, reveals an unusual subclustered biosynthetic pathway[J]. Environ Microbiol, 2015, 17(6): 2 158-2 171.

    • 55

      Ejje N, Soe C Z, Gu J, et al. The variable hydroxamic acid siderophore metabolome of the marine actinomycete Salinispora tropica CNB-440[J]. Metallomics, 2013, 5(11): 1 519-1 528.

    • 56

      Miyanaga A, Janso J E, Mc Donald L, et al. Discovery and assembly-line biosynthesis of the lymphostin pyrroloquinoline alkaloid family of mTOR inhibitors in Salinispora bacteria[J]. J Am Chem Soc, 2011, 133(34): 13 311-13 313.

    • 57

      Kesavan D, Vasudevan A, Madhuri K.Biological activity of sporolides A and B from Salinispora tropica: in silico target prediction using ligand-based pharmacophore mapping and in vitro activity validation on HIV-1 reverse transcriptase[J]. Chem Biol Drug Des, 2014, 83(3): 350-361.

    • 58

      Perrin C, Rodgers B, O'Connor J. Nucleophilic addition to a p-benzyne derived from an enediyne: a new mechanism for halide incorporation into biomolecules[J]. J Am Chem Soc, 2007, 129(15): 4 795-4 799.

    • 59

      Mc Glinchey R P, Nett M, Moore B S. Unraveling the biosynthesis of the sporolide cyclohexenone building block[J]. J Am Chem Soc, 2008, 130(8): 2 406-2 407.

    • 60

      Yamashita S, Terayama K, Ozeki E, et al. Synthetic studies on presporolide, a putative enediyne precursor of sporolides[J]. Org Lett, 2018, 20(1): 276-279.

    • 61

      Penn K, Jenkins C, Nett M, et al. Genomic islands link secondary metabolism to functional adaptation in marine actinobacteria[J]. The ISME journal, 2009, 3(10): 1 193-1 203.

    • 62

      Kersten R D, Lane A L, Nett M, et al. Bioactivity-guided genome mining reveals the lomaiviticin biosynthetic gene cluster in Salinispora tropica[J]. Chembiochem, 2013, 14(8): 955-962.

    • 63

      Song L J, Barona-Gomez F, Corre C, et al. Type Ⅲ polyketide synthase beta-ketoacyl-ACP starter unit and ethylmalonyl-CoA extender unit selectivity discovered by Streptomyces coelicolor genome mining[J]. J Am Chem Soc, 2006, 128(46): 14 754-14 755.

    • 64

      Lautru S, Deeth R J, Bailey L M, et al. Discovery of a new peptide natural product by Streptomyces coelicolor genome mining[J]. Nat Chem Biol, 2005, 1(5): 265-269.

    • 65

      Ishida K, Lincke T, Behnken S, et al. Induced biosynthesis of cryptic polyketide metabolites in a burkholderia thailandensis quorum sensing mutant[J]. J Am Chem Soc, 2010, 132(40): 13 966-13 968.

    • 66

      Laureti L, Song L, Huang S, et al. Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens[J]. Proc Natl Acad Sci U S A, 2011, 108(15): 6 258-6 263.

    • 67

      Gross H, Stockwell V O, Henkels M D, et al. The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters[J]. Chem Biol, 2007, 14(1): 53-63.

    • 68

      Blasiak L C, Clardy J.Discovery of 3-formyl-tyrosine metabolites from Pseudoalteromonas tunicata through heterologous expression[J]. J Am Chem Soc, 2010, 132(3): 926-927.

    • 69

      Kersten R D, Yang Y L, Xu Y, et al. A mass spectrometry-guided genome mining approach for natural product peptidogenomics[J]. Nat Chem Biol, 2011, 7(11): 794-802.

    • 70

      Duncan K R, Crusemann M, Lechner A, et al. Molecular networking and pattern-based genome mining improves discovery of biosynthetic gene clusters and their products from Salinispora species[J]. Chem Biol, 2015, 22(4): 460-471.

    • 71

      Rutledge P, Challis G.Discovery of microbial natural products by activation of silent biosynthetic gene clusters[J]. Nat Rev Microbiol, 2015, 13(8): 509-523.

    • 72

      Okada B, Seyedsayamdost M.Antibiotic dialogues: induction of silent biosynthetic gene clusters by exogenous small molecules[J]. FEMS Microbiol Rev, 2017, 41(1): 19-33.

    • 73

      Chiang Y, Chang S, Oakley B, et al. Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms[J]. Curr Opin Chem Biol, 2011, 15(1): 137-143.

    • 74

      Amos G C A, Awakawa T, Tuttle R N, et al. Comparative transcriptomics as a guide to natural product discovery and biosynthetic gene cluster functionality[J]. Proc Natl Acad Sci, 2017, 114(52): E11 121-E11 130.

    • 75

      Mc Glinchey R P, Nett M, Eustaquio A S, et al. Engineered biosynthesis of antiprotealide and other unnatural salinosporamide proteasome inhibitors[J]. J Am Chem Soc, 2008, 130(25): 7 822-7 823.

    • 76

      Eustaquio A S, O'Hagan D, Moore B S. Engineering fluorometabolite production: fluorinase expression in Salinispora tropica yields fluorosalinosporamide[J]. J Nat Prod, 2010, 73(3): 378-382.

    • 77

      Manam R R, Macherla V R, Tsueng G, et al. Antiprotealide is a natural product[J]. J Nat Prod, 2009, 72(2): 295-297.

    • 78

      Nett M, Gulder T A, Kale A J, et al. Function-oriented biosynthesis of beta-lactone proteasome inhibitors in Salinispora tropica[J]. J Med Chem, 2009, 52(19): 6 163-6 167.

    • 79

      Sun W, Dai S, Jiang S, et al. Culture-dependent and culture-independent diversity of Actinobacteria associated with the marine sponge Hymeniacidon perleve from the South China Sea[J]. Antonie van leeuwenhoek, 2010, 98(1): 65-75.

    • 80

      Ma L, Zhang W J, Zhu G Y, et al. Isolation of Actinobacteria with antibiotic activity associated with soft coral Nephthea sp.[J]. Acta Microbiol Sin, 2013, 53(10): 1 063-1 071.

      马亮, 张文军, 朱义广, 等. 永兴岛白穗软珊瑚共附生放线菌筛选及部分活性次级代谢产物的鉴定[J]. 微生物学报, 2013, 53(10): 1 063-1 071.

    • 81

      Yang N, Song F.Bioprospecting of novel and bioactive compounds from marine actinomycetes isolated from South China Sea sediments[J]. Curr Microbiol, 2018, 75(2): 142-149.

    • 82

      Luo X M, Qi S H, Tian X P, et al. Chemical constituents of the fermentation of marine actinomycetes Salinispora pacifica[J]. Chin Tradit Herb Drugs, 2009, 40(11): 1 710-1 712.

      罗雄明, 漆淑华, 田新朋, 等. 海洋放线菌Salinispora pacifica发酵液的化学成分研究[J]. 中草药, 2009, 40(11): 1 710-1 712.

    • 83

      Ma Y L, Deng H, Liu Z L, et al. Construct library with large genomic DNA fragments from rare marine actinomycete Salinispora arenicola[J]. Biotechnol, 2010, 20(3): 1-3.

      马艳玲, 邓海, 刘中来, 等. 稀有海洋放线菌Salinispora arenicola大片段DNA基因组文库的构建[J]. 生物技术, 2010, 20(3): 1-3.

    • 84

      Fang Y W, Liu S, Wang S J, et al. Mining Salinispora arenicola CNP193 genome for novel PKS and NRPS gene clusters[J]. Mar Sci, 2014, 38(12): 48-57.

      房耀维, 刘姝, 王淑军, 等. 海洋稀有放线菌Salinispora arenicola CNP193基因组新颖PKS和NRPS基因簇的发掘[J]. 海洋科学, 2014, 38(12): 48-57.

王可欣

机 构:

1. 中国科学院南海海洋研究所 中国科学院热带海洋生物资源与生态重点实验室,广东 广州 510301

2. 中国科学院大学,北京;100049

3. 广东省海洋药物重点实验室,广东 广州 510301

邮 箱:kexinwangch@126.com

作者简介:王可欣(1994-),女,硕士,现主要从事海洋微生物资源与生态学研究。E-mail:kexinwangch@126.com

陈柔雯

机 构:

1. 中国科学院南海海洋研究所 中国科学院热带海洋生物资源与生态重点实验室,广东 广州 510301

2. 中国科学院大学,北京;100049

3. 广东省海洋药物重点实验室,广东 广州 510301

田新朋

机 构:

1. 中国科学院南海海洋研究所 中国科学院热带海洋生物资源与生态重点实验室,广东 广州 510301

3. 广东省海洋药物重点实验室,广东 广州 510301

角 色:通讯作者

邮 箱:xinpengtian@scsio.ac.cn

地理位置经度纬度沙栖盐孢菌太平洋盐孢菌热带海洋盐孢菌
斐济岛178° 31.425' E18° 45.342' S1722-
加勒比海域77° 55.19' W26° 37.57' N11-12
关岛144° 38.8' E13° 21.9' N43-
夏威夷岛156° 29.626' W20° 38.086' N74-
帕劳134° 22.855' E07° 14.431' N76-
帕尔米亚岛162° 07.491' E05° 52.233' N5--
科特斯海110° 35.32' W24° 51.37' N84-
巴亚尔塔港105° 17.380' W20° 32.687' N11-
红海35° 23.03' E24° 22.55' N22-
马德里群岛16° 16.700' W33° 03.155' N-3-
alternativeImage/1ccece0e-1b68-415d-9286-5985967d4803-F001.jpg
产生菌化合物名称生物学活性作用的分子靶标报道年份参考文献

沙栖盐孢菌

(Salinispora arenicola)

利福霉素B、SV(rifamycins B、SV)抗菌RNA聚合酶2006[31]
arenicolides A⁃C抗人结肠腺癌细胞株未知2007[32]
saliniketals A⁃B癌症的化学预防鸟氨酸脱羧酶2007[33]
cyclomarin D未知未知2008[34]
cyclomarazines A⁃B抗病毒、抗炎症未知2008[34]
盐孢霉素(salinisporamycin)细胞毒性未知2009[35]
arenamides A⁃C抗炎症转录因子2008[36]
arenimycin A抗菌未知2010[37]
星型孢菌素(staurosporine)抗癌、抗肿瘤蛋白激酶2011[38]
盐孢菌醌A⁃F(saliniquinones A⁃F)细胞毒性未知2010[39]
arenimycin B抗耐药菌未知2013[40]
利福霉素(rifamycins O、W)未知未知2014[41]
洛伐他汀(mevinolin)抗癌、抗肿瘤HMG⁃COA还原酶2014[42]

太平洋盐孢菌

(Salinispora pacifica)

lomaiviticins A⁃B抗菌、抗肿瘤DNA2001[12]
cyanosporaside A⁃B未知未知2006[43]
pacificanones A⁃B未知未知2008[44]
salinipyrones A⁃B未知未知2008[44]
盐孢菌素K(salinosporamide K)未知未知2011[45]
lomaiviticins C⁃E未知未知2012[46]
cyanosporasides C⁃F未知未知2013[47]
肠道菌素(enterocin)抗菌未知2014[48]

热带海洋盐孢菌

(Salinispora tropica)

盐孢菌素A(salinosporamide A)抗癌、抗肿瘤蛋白酶体2003[29]
盐孢菌素B⁃C(salinosporamide B⁃C)未知未知2005[49]
sporolides A⁃B抗癌逆转录酶2005[50]
盐孢菌素D⁃J(salinosporamides D⁃J)未知未知2007[51]
salinilactam A未知未知2007[52]
antiprotealide未知未知2009[53]
sioxanthin未知未知2015[54]
三个种共有去铁敏B(desferrioxamine B)铁载体铁螯合2013[55]
三个种共有淋巴斯汀(lymphostin)免疫抑制剂未知2011[56]
类群基因组数目基因组大小/Mbp基因数目Scaffold数目GC含量/%
盐孢菌属 (Salinispora1295.535 1968469.7
沙栖盐孢菌 (Salinispora arenicola)655.715 2778069.8
太平洋盐孢菌 (Salinispora pacifica)525.365 1518869.8
热带海洋盐孢菌 (Salinispora tropica)125.314 9598969.2
media/1ccece0e-1b68-415d-9286-5985967d4803-image002.jpeg
数目化合物基因簇关联方法
16arenicolidePKS28生物信息(B)
20arenimycinarn生物信息(B)
24BE⁃43547 (APD⁃CLD)PKS58生物信息(B)
8cyanosporasidecya基因失活(G)
19cyclomarin/cyclomarazinecym基因失活(G)
3去铁敏(desferrioxamine)des基因失活(G)
17肠道菌素(enterocin)ent异源表达(H)
12斑鸠霉素(ikarugamycin)ika生物信息(B)
8lomaiviticinlom基因失活(G)
2淋巴斯汀(lymphostin)lym基因失活(G)
14pacificanone/salinipyronespr基因失活(G)
23retimycinrtm生物信息(B)
5利福霉素(rifamycin)/saliniketalrif基因失活(G)
11salinichelinslc生物信息(B)
9salinilactamslm生物信息(B)
22盐孢菌醌(saliniquinone)PKS65生物信息(B)
10盐孢菌素(salinosporamide)sal基因失活(G)
1sioxanthinsio基因失活(G)
13sporolidespo异源表达(H)
4星型孢菌素(staurosporine)sta生物信息(B)
21tambromycintbr生物信息(B)
6isopimara⁃8,15⁃dien⁃19⁃olterp1异源表达(H)
15硫乳霉素(thiolactomycin)tlm异源表达(H)
18tirandalydigintdy生物信息(B)
alternativeImage/1ccece0e-1b68-415d-9286-5985967d4803-F003.jpg

表1 盐孢菌属完成全基因组测序的119株菌株的分布[16]

Table 1 Distribution of 119 genome-sequenced Salinispora strains[16]

图1 盐孢菌属(Salinispora)系统发育树[19]

Fig. 1 Salinispora species phylogeny[19]

表2 盐孢菌属次级代谢产物及生物活性

Table 2 Bioactive secondary metabolites derived from the genus Salinispora

表3 盐孢菌属菌株基因组信息

Table 3 Genome statistics of Salinispora species level

图2 热带海洋盐孢菌CNB-400的全基因组图谱[52]

Fig. 2 Circular chromosome of S. tropica CNB-400[52]

表4 盐孢菌属次级代谢产物与对应的生物合成基因簇[16]

Table 4 Compounds and their associated BGCs (biosynthetic gene clusters) detected in Salinispora strains[16]

图3 antiprotealide的结构式

Fig. 3 Structure of antiprotealide

image /

无注解

☀表示自举值为100%的分支节点;●表示自举值大于80%的分支节点;〇表示自举值大于50%的分支节点;□表示贝叶斯后验概率为1

☀ =100% bootstrap support; ● >80% bootstrap support; 〇 >50% bootstrap support; □=posterior probability of 1

无注解

无注解

无注解

无注解

最初由盐孢菌素A和omuralide杂合而成

originally produced as a synthetic hybrid between salinosporamide A and omuralide

  • 参考文献

    • 1

      Jensen P R, Dwight R, Fenical W. Distribution of actinomycetes in near-shore tropical marine sediments[J]. Appl Environ Microbiol, 1991, 57(4): 1 102-1 108.

    • 2

      Jensen P R, Moore B S, Fenical W.The marine actinomycete genus Salinispora: a model organism for secondary metabolite discovery[J]. Nat Prod Rep, 2015, 32(5): 738-751.

    • 3

      Maldonado L A, Fenical W, Jensen P R, et al. Salinispora arenicola gen. nov., sp. nov. and Salinispora tropica sp. nov., obligate marine actinomycetes belonging to the family Micromonosporaceae[J]. Int J Syst Evol Microbiol, 2005, 55(5): 1 759-1 766.

    • 4

      Jensen P R, Mafnas C. Biogeography of the marine actinomycete Salinispora[J]. Environ Microbiol, 2006, 8(11): 1 881-1 888.

    • 5

      Ahmed L, Jensen P R, Freel K C, et al. Salinispora pacifica sp. nov., an actinomycete from marine sediments[J]. Antonie Van Leeuwenhoek, 2013, 103(5): 1 069-1 078.

    • 6

      Mincer T J, Jensen P R, Kauffman C A, et al. Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments[J]. Appl Environ Microbiol, 2002, 68(10): 5 005-5 011.

    • 7

      Weyland H. Actinomycetes in North Sea and Atlantic Ocean sediments[J]. Nature, 1969, 223(5 208): 858.

    • 8

      Goodfellow M, Haynes J A. Actinomycetes in marine sediments[M]. New York: Biol Biochem Biomed Aspects Actinomycetes, 1984: 453-472.

    • 9

      Nett M, Moore B S. Exploration and engineering of biosynthetic pathways in the marine actinomycete Salinispora tropica[J]. Pure and Applied Chemistry, 2009, 81(6): 1 075-1 084.

    • 10

      Tsueng G, Lam K S. A low-sodium-salt formulation for the fermentation of salinosporamides by Salinispora tropica strain NPS21184[J]. Appl Microbiol Biotechnol, 2008, 78(5): 821-826.

    • 11

      Kim T K, Garson M J, Fuerst J A. Marine actinomycetes related to the “Salinospora” group from the great barrier reef sponge Pseudoceratina clavata[J]. Environ Microbiol, 2010, 7(4): 509-518.

    • 12

      He H, Ding W D, Bernan V S, et al. Lomaiviticins A and B, potent antitumor antibiotics from Micromonospora lomaivitiensis[J]. J Am Chem Soc, 2001, 123: 5 362-5 363.

    • 13

      Freel K C, Edlund A, Jensen P R. Microdiversity and evidence for high dispersal rates in the marine actinomycete 'Salinispora pacifica'[J]. Environ Microbiol, 2012, 14(2): 480-493.

    • 14

      Mincer T J, Fenical W, Jensen P R. Culture-dependent and culture-independent diversity within the obligate marine actinomycete genus Salinispora[J]. Appl Environ Microbiol, 2005, 71(11): 7 019-7 028.

    • 15

      Prieto-Davo A, Villarreal-Gomez L J, Forschner-Dancause S, et al. Targeted search for actinomycetes from nearshore and deep-sea marine sediments[J]. FEMS Microbiol Ecol, 2013, 84(3): 510-518.

    • 16

      Letzel A C, Li J, Amos G C A, et al. Genomic insights into specialized metabolism in the marine actinomycete Salinispora[J]. Environ Microbiol, 2017, 19(9): 3 660-3 673.

    • 17

      Jensen P R. Linking species concepts to natural product discovery in the post-genomic era[J]. J Ind Microbiol Biotechnol, 2010, 37(3): 219-224.

    • 18

      Jensen P R, Williams P G, Oh D C, et al. Species-specific secondary metabolite production in marine actinomycetes of the genus Salinispora[J]. Appl Environ Microbiol, 2007, 73(4): 1 146-1 152.

    • 19

      Ziemert N, Lechner A, Wietz M, et al. Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora[J]. Proc Natl Acad Sci U S A, 2014, 111(12): E1 130-E1 139.

    • 20

      Bull A T, Stach J E M. Marine actinobacteria: new opportunities for natural product search and discovery[J]. Trends Microbiol, 2007, 15(11): 491-499.

    • 21

      Berdy J.Bioactive microbial metabolites: a personal view[J]. J Antibiot, 2005, 58(1): 1-26.

    • 22

      Manivasagan P, Venkatesan J, Sivakumar K, et al. Marine actinobacterial metabolites: current status and future perspectives[J]. Microbiol Res, 2013, 168(6): 311-332.

    • 23

      Bull A T, Ward A C, Goodfellow M.Search and discovery strategies for biotechnology: the paradigm shift[J]. Microbiol Mol Biol Rev, 2000, 64(3): 573-606.

    • 24

      Fenical W, Jensen P R, Palladino M A, et al. Discovery and development of the anticancer agent salinosporamide A (NPI-0052)[J]. Bioorg Med Chem, 2009, 17(6): 2 175-2 180.

    • 25

      Groll M, Huber R, Potts B C M. Crystal structures of salinosporamide A (NPI-0052) and B (NPI-0047) in complex with the 20s proteasome reveal important consequences of beta-lactone ring opening and a mechanism for irreversible binding[J]. J Am Chem Soc, 2006, 128(15): 5 136-5 141.

    • 26

      Chauhan D, Catley L, Li G, et al. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from bortezomib[J]. Cancer Cell, 2005, 8(5): 407-419.

    • 27

      Niewerth D, Jansen G, Riethoff L F, et al. Antileukemic activity and mechanism of drug resistance to the marine Salinispora tropica proteasome inhibitor salinosporamide A (marizomib)[J]. Mol Pharmacol, 2014, 86(1): 12-19.

    • 28

      Chauhan D, Hideshima T, Anderson K C. A novel proteasome inhibitor NPI-0052 as an anticancer therapy[J]. Br J Cancer, 2006, 95(8): 961-965.

    • 29

      Feling R H, Buchanan G O, Mincer T J, et al. Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinispora[J]. Angew Chem Int Ed Engl, 2003, 42(3): 355-357.

    • 30

      Groenhagen U, De Oliveira A L, Fielding E, et al. Coupled biosynthesis of volatiles and salinosporamide A in Salinispora tropica[J]. Chembiochem, 2016, 17(20): 1 978-1 985.

    • 31

      Kim T K, Hewavitharana A K, Shaw P N, et al. Discovery of a new source of rifamycin antibiotics in marine sponge actinobacteria by phylogenetic prediction[J]. Appl Environ Microbiol, 2006, 72(3): 2 118-2 125.

    • 32

      Williams P G, Miller E D, Asolkar R N, et al. Arenicolides A-C, 26-membered ring macrolides from the marine actinomycete Salinispora arenicola[J]. J Organic Chem, 2007, 72(14): 5 025-5 034.

    • 33

      Williams P G, Asolkar R N, Kondratyuk T, et al. Saliniketals A and B, bicyclic polyketides from the marine actinomycete Salinispora arenicola[J]. J Nat Prod, 2007, 70(1): 83-88.

    • 34

      Schultz A W, Oh D C, Carney J R, et al. Biosynthesis and structures of cyclomarins and cyclomarazines, prenylated cyclic peptides of marine actinobacterial origin[J]. J Am Chem Soc, 2008, 130(13): 4 507-4 516.

    • 35

      Matsuda S, Adachi K, Matsuo Y, et al. Salinisporamycin, a novel metabolite from Salinispora arenicora[J]. J Antibiot, 2009, 62(9): 519.

    • 36

      Asolkar R N, Freel K C, Jensen P R, et al. Arenamides A-C, cytotoxic NFκB inhibitors from the marine actinomycete Salinispora arenicola[J]. J Nat Prod, 2008, 72(3): 396-402.

    • 37

      Asolkar R N, Kirkland T N, Jensen P R, et al. Arenimycin, an antibiotic effective against rifampin-and methicillin-resistant staphylococcus aureus from the marine actinomycete Salinispora arenicola[J]. J Antibiot, 2010, 63(1): 37.

    • 38

      Freel K C, Nam S J, Fenical W, et al. Evolution of secondary metabolite genes in three closely related marine actinomycete species [J]. Appl Environ Microbiol, 2011, 77(20): 7 261-7 270.

    • 39

      Murphy B T, Narender T, Kauffman C A, et al. Saliniquinones A–F, new members of the highly cytotoxic anthraquinone-γ-pyrones from the marine actinomycete Salinispora arenicola[J]. Aust J Chem, 2010, 63(6): 929-934.

    • 40

      Kersten R D, Ziemert N, Gonzalez D J, et al. Glycogenomics as a mass spectrometry-guided genome-mining method for microbial glycosylated molecules[J]. Proc Natl Acad Sci, 2013, 110(47): E4 407-E4 416.

    • 41

      Bose U, Hewavitharana A K, Vidgen M E, et al. Discovering the recondite secondary metabolome spectrum of Salinispora species: a study of inter-species diversity[J]. PloS one, 2014, 9(3): e91 488.

    • 42

      Bose U, Hodson M P, Shaw P N, et al. Bacterial production of the fungus-derived cholesterol-lowering agent mevinolin[J]. Biomed Chromatogr, 2014, 28(9): 1 163-1 166.

    • 43

      Oh D C, Williams P G, Kauffman C A, et al. Cyanosporasides A and B, chloro-and cyano-cyclopenta[a] indene glycosides from the marine actinomycete “Salinispora pacifica”[J]. Org Lett, 2006, 8(6): 1 021-1 024.

    • 44

      Oh D C, Gontang E A, Kauffman C A, et al. Salinipyrones and pacificanones, mixed-precursor polyketides from the marine actinomycete Salinispora pacifica[J]. J Nat Prod, 2008, 71(4): 570-575.

    • 45

      Eustaquio A S, Nam S J, Penn K, et al. The discovery of salinosporamide K from the marine bacterium "Salinispora pacifica" by genome mining gives insight into pathway evolution[J]. Chembiochem, 2011, 12(1): 61-64.

    • 46

      Woo C M, Beizer N E, Janso J E, et al. Isolation of lomaiviticins C-E, transformation of lomaiviticin C to lomaiviticin A, complete structure elucidation of lomaiviticin A, and structure–activity analyses[J]. J Am Chem Soc, 2012, 134: 15 285-15 288.

    • 47

      Lane A L, Nam S J, Fukuda T, et al. Structures and comparative characterization of biosynthetic gene clusters for cyanosporasides, enediyne-derived natural products from marine actinomycetes[J]. J Am Chem Soc, 2013, 135(11): 4 171-4 174.

    • 48

      Bonet B, Teufel R, Crüsemann M, et al. Direct capture and heterologous expression of Salinispora natural product genes for the biosynthesis of enterocin[J]. J Nat Prod, 2014, 78(3): 539-542.

    • 49

      Williams P G, Buchanan G O, Feling R H, et al. New cytotoxic salinosporamides from the marine actinomycete Salinispora tropica[J]. J Organic Chem, 2005, 70(16): 6 196-6 203.

    • 50

      Buchanan G O, Williams P G, Feling R H, et al. Sporolides A and B: structurally unprecedented halogenated macrolides from the marine actinomycete Salinispora tropica[J]. Org Lett, 2005, 7(13): 2 731-2 734.

    • 51

      Reed K A, Manam R R, Mitchell S S, et al. Salinosporamides D-J from the marine actinomycete Salinispora tropica, bromosalinosporamide, and thioester derivatives are potent inhibitors of the 20S proteasome[J]. J Nat Prod, 2007, 70(2): 269-276.

    • 52

      Udwary D W, Zeigler L, Asolkar R N, et al. Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica[J]. Proc Natl Acad Sci, 2007, 104(25): 10 376-10 381.

    • 53

      Manam R R, Macherla V R, Tsueng G, et al. Antiprotealide is a natural product[J]. J Nat Prod, 2009, 72(2): 295-297.

    • 54

      Richter T K S, Hughes C C, Moore B S. Sioxanthin, a novel glycosylated carotenoid, reveals an unusual subclustered biosynthetic pathway[J]. Environ Microbiol, 2015, 17(6): 2 158-2 171.

    • 55

      Ejje N, Soe C Z, Gu J, et al. The variable hydroxamic acid siderophore metabolome of the marine actinomycete Salinispora tropica CNB-440[J]. Metallomics, 2013, 5(11): 1 519-1 528.

    • 56

      Miyanaga A, Janso J E, Mc Donald L, et al. Discovery and assembly-line biosynthesis of the lymphostin pyrroloquinoline alkaloid family of mTOR inhibitors in Salinispora bacteria[J]. J Am Chem Soc, 2011, 133(34): 13 311-13 313.

    • 57

      Kesavan D, Vasudevan A, Madhuri K.Biological activity of sporolides A and B from Salinispora tropica: in silico target prediction using ligand-based pharmacophore mapping and in vitro activity validation on HIV-1 reverse transcriptase[J]. Chem Biol Drug Des, 2014, 83(3): 350-361.

    • 58

      Perrin C, Rodgers B, O'Connor J. Nucleophilic addition to a p-benzyne derived from an enediyne: a new mechanism for halide incorporation into biomolecules[J]. J Am Chem Soc, 2007, 129(15): 4 795-4 799.

    • 59

      Mc Glinchey R P, Nett M, Moore B S. Unraveling the biosynthesis of the sporolide cyclohexenone building block[J]. J Am Chem Soc, 2008, 130(8): 2 406-2 407.

    • 60

      Yamashita S, Terayama K, Ozeki E, et al. Synthetic studies on presporolide, a putative enediyne precursor of sporolides[J]. Org Lett, 2018, 20(1): 276-279.

    • 61

      Penn K, Jenkins C, Nett M, et al. Genomic islands link secondary metabolism to functional adaptation in marine actinobacteria[J]. The ISME journal, 2009, 3(10): 1 193-1 203.

    • 62

      Kersten R D, Lane A L, Nett M, et al. Bioactivity-guided genome mining reveals the lomaiviticin biosynthetic gene cluster in Salinispora tropica[J]. Chembiochem, 2013, 14(8): 955-962.

    • 63

      Song L J, Barona-Gomez F, Corre C, et al. Type Ⅲ polyketide synthase beta-ketoacyl-ACP starter unit and ethylmalonyl-CoA extender unit selectivity discovered by Streptomyces coelicolor genome mining[J]. J Am Chem Soc, 2006, 128(46): 14 754-14 755.

    • 64

      Lautru S, Deeth R J, Bailey L M, et al. Discovery of a new peptide natural product by Streptomyces coelicolor genome mining[J]. Nat Chem Biol, 2005, 1(5): 265-269.

    • 65

      Ishida K, Lincke T, Behnken S, et al. Induced biosynthesis of cryptic polyketide metabolites in a burkholderia thailandensis quorum sensing mutant[J]. J Am Chem Soc, 2010, 132(40): 13 966-13 968.

    • 66

      Laureti L, Song L, Huang S, et al. Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens[J]. Proc Natl Acad Sci U S A, 2011, 108(15): 6 258-6 263.

    • 67

      Gross H, Stockwell V O, Henkels M D, et al. The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters[J]. Chem Biol, 2007, 14(1): 53-63.

    • 68

      Blasiak L C, Clardy J.Discovery of 3-formyl-tyrosine metabolites from Pseudoalteromonas tunicata through heterologous expression[J]. J Am Chem Soc, 2010, 132(3): 926-927.

    • 69

      Kersten R D, Yang Y L, Xu Y, et al. A mass spectrometry-guided genome mining approach for natural product peptidogenomics[J]. Nat Chem Biol, 2011, 7(11): 794-802.

    • 70

      Duncan K R, Crusemann M, Lechner A, et al. Molecular networking and pattern-based genome mining improves discovery of biosynthetic gene clusters and their products from Salinispora species[J]. Chem Biol, 2015, 22(4): 460-471.

    • 71

      Rutledge P, Challis G.Discovery of microbial natural products by activation of silent biosynthetic gene clusters[J]. Nat Rev Microbiol, 2015, 13(8): 509-523.

    • 72

      Okada B, Seyedsayamdost M.Antibiotic dialogues: induction of silent biosynthetic gene clusters by exogenous small molecules[J]. FEMS Microbiol Rev, 2017, 41(1): 19-33.

    • 73

      Chiang Y, Chang S, Oakley B, et al. Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms[J]. Curr Opin Chem Biol, 2011, 15(1): 137-143.

    • 74

      Amos G C A, Awakawa T, Tuttle R N, et al. Comparative transcriptomics as a guide to natural product discovery and biosynthetic gene cluster functionality[J]. Proc Natl Acad Sci, 2017, 114(52): E11 121-E11 130.

    • 75

      Mc Glinchey R P, Nett M, Eustaquio A S, et al. Engineered biosynthesis of antiprotealide and other unnatural salinosporamide proteasome inhibitors[J]. J Am Chem Soc, 2008, 130(25): 7 822-7 823.

    • 76

      Eustaquio A S, O'Hagan D, Moore B S. Engineering fluorometabolite production: fluorinase expression in Salinispora tropica yields fluorosalinosporamide[J]. J Nat Prod, 2010, 73(3): 378-382.

    • 77

      Manam R R, Macherla V R, Tsueng G, et al. Antiprotealide is a natural product[J]. J Nat Prod, 2009, 72(2): 295-297.

    • 78

      Nett M, Gulder T A, Kale A J, et al. Function-oriented biosynthesis of beta-lactone proteasome inhibitors in Salinispora tropica[J]. J Med Chem, 2009, 52(19): 6 163-6 167.

    • 79

      Sun W, Dai S, Jiang S, et al. Culture-dependent and culture-independent diversity of Actinobacteria associated with the marine sponge Hymeniacidon perleve from the South China Sea[J]. Antonie van leeuwenhoek, 2010, 98(1): 65-75.

    • 80

      Ma L, Zhang W J, Zhu G Y, et al. Isolation of Actinobacteria with antibiotic activity associated with soft coral Nephthea sp.[J]. Acta Microbiol Sin, 2013, 53(10): 1 063-1 071.

      马亮, 张文军, 朱义广, 等. 永兴岛白穗软珊瑚共附生放线菌筛选及部分活性次级代谢产物的鉴定[J]. 微生物学报, 2013, 53(10): 1 063-1 071.

    • 81

      Yang N, Song F.Bioprospecting of novel and bioactive compounds from marine actinomycetes isolated from South China Sea sediments[J]. Curr Microbiol, 2018, 75(2): 142-149.

    • 82

      Luo X M, Qi S H, Tian X P, et al. Chemical constituents of the fermentation of marine actinomycetes Salinispora pacifica[J]. Chin Tradit Herb Drugs, 2009, 40(11): 1 710-1 712.

      罗雄明, 漆淑华, 田新朋, 等. 海洋放线菌Salinispora pacifica发酵液的化学成分研究[J]. 中草药, 2009, 40(11): 1 710-1 712.

    • 83

      Ma Y L, Deng H, Liu Z L, et al. Construct library with large genomic DNA fragments from rare marine actinomycete Salinispora arenicola[J]. Biotechnol, 2010, 20(3): 1-3.

      马艳玲, 邓海, 刘中来, 等. 稀有海洋放线菌Salinispora arenicola大片段DNA基因组文库的构建[J]. 生物技术, 2010, 20(3): 1-3.

    • 84

      Fang Y W, Liu S, Wang S J, et al. Mining Salinispora arenicola CNP193 genome for novel PKS and NRPS gene clusters[J]. Mar Sci, 2014, 38(12): 48-57.

      房耀维, 刘姝, 王淑军, 等. 海洋稀有放线菌Salinispora arenicola CNP193基因组新颖PKS和NRPS基因簇的发掘[J]. 海洋科学, 2014, 38(12): 48-57.